Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,4,6-Trimethyl-1,3,5-tris(4-methylthiazol-2-ylsulfanylmethyl)benzene

Hui-Min Liu, Wei Zhang and Wen-Qin Zhang*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wqzhang@tju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.006 \text{ Å}$ Disorder in main residue R factor = 0.059 wR factor = 0.114 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{24}H_{27}N_3S_6$, crystallizes in the monoclinic space group $P2_1/n$. All of the 4-methylthiazol-2-ylsulfanyl groups point to the same side of the central benzene ring, resulting in a tripodal arrangement.

Received 23 June 2003 Accepted 29 July 2003 Online 8 August 2003

Comment

We are presently involved in the synthesis of multithiazoles, as thiazole and its derivatives are of considerable interest for their remarkable bioactivities (Tian *et al.*, 1996; Sasaki *et al.*, 1994, 1996) and their ability to act as potential donors to transition metals for the generation of one-, two- and three-dimensional coordination networks (Liu *et al.*, 2001; Sun *et al.*, 1997; Fisher *et al.*, 1985). Thus, we were prompted to explore new compounds containing two or more thiazolyl groups using different linkages. The selection of the linkages is crucial; the existing functions of linkages and the availability of the starting materials from commercial sources are two aspects of primary consideration. Here we report the synthesis and the structure of a new flexible ligand containing three thiazolyl groups, *viz.* 2,4,6-trimethyl-1,3,5-tris(4-methylthiazol-2-yl-sulfanylmethyl)benzene, (I).

As shown in Fig. 1, the tripodal arrangement of all 4-methylthiazol-2-ylsulfanyl groups gives a conformation with all S atoms available for facile coordination to a metal ion. The methyl and methylene groups bonded to the benzene ring are nearly coplanar with the benzene ring plane, the largest deviation being 0.1504 (8) Å for atom C10. Similar arrangements are found between the methyl groups and the bonded thiazole rings of the 4-methylthiazol-2-yl groups. The three exocyclic S atoms (S1, S3 and S5) are approximately equidistant from the benzene ring; the angle between the S1/S3/S5 plane and the benzene plane is 2.2 (9)°.

Experimental

2,4,6-Trimethyl-1,3,5-tris(bromomethyl)benzene was prepared according to a literature method (van der Made & van der Made,

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

1993). The title compound was synthesized according to a reported procedure (Zhang *et al.*, 2003) by the reaction of 2,4,6-trimethyl-1,3,5-tris(bromomethyl)benzene and potassium 4-methylthiazolylthiolate in EtOH at 323–333 K; yield 87.4%; m.p. 388–389 K; IR (KBr) 3111 (w), 2960 (w), 2916 (w), 1527 (ms), 1414 (s), 1414 (s), 1372 (ms), 1289 (s), 1032 (vs), 723 (w), 706 (ms) cm $^{-1}$; 1 H NMR (CDCl $_3$) δ 6.81 (3H, s), 4.49 (6H, s), 2.49 (9H, s), 2.45 (9H, s) p.p.m.; elemental analysis calculated for C $_{24}$ H $_{27}$ N $_{3}$ S $_{6}$ C 52.40, H 4.90, N 7.63%; found C 52.40, H 4.88, N 7.47%. Single crystals of (I) suitable for X-ray analysis were obtained by slow diffusion of acetone into a chloroform solution.

Crystal data

$C_{24}H_{27}N_3S_6$	$D_{\rm r} = 1.343 \; {\rm Mg \; m^{-3}}$
$M_r = 549.91$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 992
a = 12.216 (4) Å	reflections
b = 17.801 (5) Å	$\theta = 2.5 – 21.4^{\circ}$
c = 12.528 (4) Å	$\mu = 0.52 \text{ mm}^{-1}$
$\beta = 93.420 (6)^{\circ}$	T = 293 (2) K
$V = 2719.4 (15) \text{ Å}^3$	Prism, colorless
Z = 4	$0.25 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	4772 independent reflections
diffractometer	2335 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.069$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 13$
$T_{\min} = 0.880, T_{\max} = 0.927$	$k = -17 \rightarrow 21$
12608 measured reflections	$l = -10 \rightarrow 14$

Refinement

refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.059$	+ 0.7831 <i>P</i>]
$wR(F^2) = 0.114$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.003$
4772 reflections	$\Delta \rho_{\text{max}} = 0.25 \text{ e Å}^{-3}$
360 parameters	$\Delta \rho_{\min} = -0.19 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

In the disordered thiazolyl ring, the bonds S6-C21, S6-C22, S6'-C21' and S6'-C22' were restrained to 1.71 (1) Å and the angles C21-S6-C22, C21'-S6'-C22' to $89~(1)^\circ$; other C-C and C-N bond parameters were restrained to appropriate values. Primed atoms have occupancy 0.53 (3) and unprimed 0.47 (3). The H atoms were included in calculated positions and refined with riding-model constraints.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997) and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare

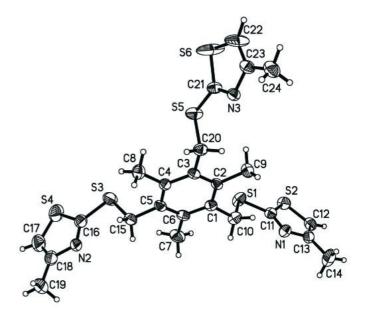


Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Only the minor disorder component of the thiazolyl ring is shown.

material for publication: SHELXTL.

We gratefully acknowledge financial support from the Foundation for University Key Teachers by the Ministry of Education of China.

References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

 Fisher, L. M., Kuroda, R. & Sakai, T. T. (1985). Biochemistry, 24, 3199–3207.
 Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2001). Acta Cryst. C57, 354–355.

Made, A. W. van der & van der Made, R. H. (1993). J. Org. Chem. 58, 1262– 1263

Sasaki, H. (1994). Tetrahedron Lett. 35, 4401-4404.

Sasaki, H., Takanori, S., Yamamoto, K. & Nakamoto, Y. (1996). Chem. Pharm. Bull. 44, 1761–1764.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sun, W., Gao, X. & Liu, F. J. (1997). Appl. Polym. Sci. 64, 2309–2315.

Tian, Y.-N., Yang, P., Wang, H.-F., Feng, Y.-L., Liu, S.-X. & Huang, J.-L. (1996). *Polyhedron*, **15**, 2771–2776.

Zhang, W., Liu, H.-M., Li, C.-B. & Zhang, W.-Q. (2003). Acta Cryst. E59, o26–o27.